yPtr

location lTocation
500000 e 600000

Fig. 8.3 | Representation of y and yPtr in memory.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.3 Pointer Operators (cont.)

Indirection (*) Operator

e The unary * operator—commonly referred to as the
Indirection operator or dereferencing operator——returns an
Ivalue representing the object to which its pointer operand
points.

— Called dereferencing a pointer

* A dereferenced pointer may also be used on the /eft side of
an assignment.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

2

Common Programming Error 8.2

Dereferencing an uninitialized pointer results in
undefined behavior that could cause a fatal execution-
time error. This could also lead to accidentally
modifying important data, allowing the program to run
to completion, possibly with incorrect results.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

b

Error-Prevention Tip 8.2

Dereferencing a null pointer results in undefined
behavior and typically is a fatal execution-time error, so
you should ensure that a pointer is not null before

dereferencing it.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.3 Pointer Operators (cont.)

Using the Address (&) and Indirection (*)
Operators

* The program in Fig. 8.4 demonstrates the &
and * pointer operators.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

I // Fig. 8.4: fig08_04.cpp

2 // Pointer operators & and *.

3 #include <iostream>

4 using namespace std;

5

6 int main()

7 {

8 int a=7; // assigned 7 to a

9 int *aPtr = &a; // initialize aPtr with the address of int variable a
10

11 cout << << &a

12 << << aPtr;

13 cout << << a

14 << << *aPtr << endl;

I5 } // end main

The address of a is 002DFD80
The value of aPtr is 002DFD80

The value of a is 7
The value of *aPtr is 7

Fig. 8.4 | Pointer operators & and *.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.3 Pointer Operators (cont.)

Precedence and Associativity of the
Operators Discussed So Far

 Figure 8.5 lists the precedence and
assoclativity of the operators introduced to this
point.

» The address (&) and dereferencing operator (*)
are unary operators on the fourth level.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

O left to right primary
[See cantion in Fig. 2.10
regarding grouping parentheses.]

O [1 ++ -- static_cast<types(operand) left to right postfix
o= o+ - 1 & ¥ right to left unary (prefix)
/% left to right multiplicative
+ - left to right additive
<< >> left to right insertion/extraction
< <= > >= left to right relational
= I= left to right equality
&& left to right logical AND
|l left to right logical OR
7 right to left conditional

Fig. 8.5 | Operator precedence and associativity of the operators discussed so
far. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

= 4= = *= [= %= right to left assignment

, left to right comma

Fig. 8.5 | Operator precedence and associativity of the operators discussed so
far. (Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.4 Pass-by-Reference with Pointers

There are three ways in C++ to pass arguments to a
function—pass-by-value, pass-by-reference with reference
arguments and pass-by-reference with pointer arguments.

Here, we explain pass-by-reference with pointer arguments.

Pointers, like references, can be used to modify one or more
variables in the caller or to pass pointers to large data
objects to avoid the overhead of passing the objects by
value.

You can use pointers and the indirection operator (*) to
accomplish pass-by-reference.

When calling a function with an argument that should be
modified, the address of the argument is passed.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.4 Pass-by-Reference with Pointers (cont.)

An Example of Pass-By-Value

* Figure 8.6 and Fig. 8.7 present two versions of
a function that cubes an integer.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

OoOo~NOTUnNHh WN=

10
11
12
13
14
15
16
17
18
19
20
21
22

// Fig. 8.6: fig08_06.cpp

// Pass-by-value used to cube a variable’s value.
#include <iostream>

using namespace std;

int cubeByValue(1int); // prototype

int main()

{

int number = °;
cout << << humber;

number = cubeByValue(number); // pass number by value to cubeByValue
cout << << number << endl;
} // end main

// calculate and return cube of integer argument
int cubeByValue(int n)
{
return n * n * n; // cube local variable n and return result
} // end function cubeByValue

Fig. 8.6 | Pass-by-value used to cube a variable’s value. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

The original value of number is 5
The new value of number 1is 125

Fig. 8.6 | Pass-by-value used to cube a variable’s value. (Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.4 Pass-by-Reference with Pointers (cont.)

An Example of Pass-By-Reference with
Pointers

* Figure 8.7 passes the variable number to
function cubeByReference using pass-by-
reference with a pointer argument—the
address of number is passed to the function.

* The function uses the dereferenced pointer to
cube the value to which nPtr points.

— This directly changes the value of number in
ma'i n. ©1992-2014 by Pearson Education, Inc. All

Rights Reserved.

1 // Fig. 8.7: fig08_07.cpp

2 // Pass-by-reference with a pointer argument used to cube a
3 // variable’s value.

4 #include <iostream>

5 using namespace std;

6

7 void cubeByReference(int *); // prototype

8

9 int main(Q)

1o {

11 int number = 5}

12

13 cout << << humber;

14

15 cubeByReference(&number); // pass number address to cubeByReference
16

17 cout << << humber << endl;
I8 } // end main

19
20 // calculate cube of *nPtr; modifies variable number in main
21 void cubeByReference(int *nPtr)
22 {
23 *nPtr = *nPtr * *nPtr * *nPtr: // cube *nPtr
24 1} // end function cubeByReference

Fig. 8.7 | Pass-by-reference with a pointer argument used to cube a variable’s
value. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

